HW12 - Liquids & Solids

① This is a preview of the published version of the quiz

Started: Oct 21 at 11:23am

Quiz Instructions

Homework 12 - Liquids & Solids

Question 1	1 pts
Which of the following statements regarding intermolecular forces (IMF) is/are true?	
1. IMF result from attractive forces between regions of positive and negative charge density in neighboring molecules.	
2. The stronger the bonds within a molecule are, the stronger the intermolecular forces will be.	
3. Only non-polar molecules have instantaneous dipoles.	
① 1 and 2	
○ 2 and 3	
○ 3 only	
○ 1 and 3	
○ 1 only	
○ 1, 2, and 3	
O 2 only	
Question 2	2 pts
Put the following compounds in order of increasing melting points.	2 pts
Put the following compounds in order of increasing melting points. LiF, HF, F_2 , NF_3	2 pts
Put the following compounds in order of increasing melting points. LiF, HF, F_2 , NF_3	2 pts
Put the following compounds in order of increasing melting points. LiF, HF, F ₂ , NF ₃	2 pts
Put the following compounds in order of increasing melting points. LiF, HF, F ₂ , NF ₃ F ₂ , NF ₃ , LiF, HF LiF, HF, NF ₃ , F ₂	2 pts
Put the following compounds in order of increasing melting points. LiF, HF, F ₂ , NF ₃ F ₂ , NF ₃ , LiF, HF LiF, HF, NF ₃ , F ₂ LiF, HF, F ₂ , NF ₃	2 pts
Put the following compounds in order of increasing melting points. LiF, HF, F ₂ , NF ₃ F ₂ , NF ₃ , LiF, HF LiF, HF, NF ₃ , F ₂ LiF, HF, F ₂ , NF ₃ F ₂ , NF ₃ , HF, LiF	2 pts
○ LiF, HF, NF ₃ , F ₂ ○ LiF, HF, F ₂ , NF ₃	
Put the following compounds in order of increasing melting points. LiF, HF, F ₂ , NF ₃ F ₂ , NF ₃ , LiF, HF LiF, HF, NF ₃ , F ₂ LiF, HF, F ₂ , NF ₃ F ₂ , NF ₃ , HF, LiF	

interionic (ionic)
○ London
Question 4 1 pts
Quotion 4
A drop of liquid tends to have a spherical shape due to the property of
surface tension.
○ close packing.
○ viscosity.
capillary action.
o vapor pressure.
Question 5 1 pts
·
Surface tension describes
capillary action.
the forces of attraction between the surface of a liquid and the air above it.
the inward forces that must be overcome in order to expand the surface area of a liquid.
the resistance to flow of a liquid.
adhesive forces between molecules.
the forces of attraction between surface molecules of a solvent and the solute molecules.
Question 6 1 pts
Predict which of butane (C_4H_{10}) or propanone (CH_3COCH_3) has the greater viscosity. Assume that they are both at the same temperature and in their liquid form.
They have equal viscosities.
○ propanone
) butane
○ It's impossible to know.
Question 7 1 pts
Which would you expect to be the most viscous?

○ C ₈ H ₁₈ at 50°C	
○ C ₄ H ₈ at 30°C	
○ C ₈ H ₁₈ at 30°C	
○ C ₄ H ₈ at 50°C	
Question 8	1 pts
The vapor pressure of all liquids	
increases with temperature.	
odecreases if the volume of the container increases.	
is the same at 100°C.	
is the same at their freezing points.	
Question 9	2 pts
Based on the general concepts that govern intermolecular attractions, which of the following orderings of fluoroca going from highest to lowest boiling point?	arbons is correct when
dollid Hotti Hidriest to lowest polilita politi:	
1. CF ₄	
1. CF ₄	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1 2. 1, 3	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1 2. 1, 3 1. 2, 3	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1 2. 1, 3 1. 2, 3 3. 1, 2	
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1 2. 1, 3 1. 2, 3 3. 1, 2	2 pts
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1 2. 1, 3 1. 2, 3 3. 1, 2 3. 2, 1	2 pts
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1 2. 1, 3 1. 2, 3 3. 1, 2 3. 2, 1	2 pts
1. CF ₄ 2. F ₃ C-(CF ₂) ₄ -CF ₃ 3. F ₃ C-(CF ₂) ₂ -CF ₃ 1. 3, 2 2. 3, 1 2. 1, 3 1. 2, 3 3. 1, 2 3. 2, 1 Question 10 Tetrabromomethane has a higher boiling point than tetrachloromethane.	2 pts

Question 11	2 pts
Which of KBr or CH ₃ Br is likely to have the higher normal boiling point?	
O It is impossible to tell.	
○ CH ₃ Br	
They will have the same boiling point.	
○ KBr	
Question 12	2 pts
Which of the following would you expect to boil at the lowest temperature?	·
○ C ₃ H ₆	
○ CH ₄	
O PCI ₃	
○ KF	
○ C ₈ H ₁₈	
Question 13	1 pts
A liquid with a high vapor pressure is called	
O hot.	
ovolatile.	
o cold.	
○ viscous.	
Question 14	2 pts
Which would you expect to have the highest vapor pressure at a given temperature	
	··
○ C ₅ H ₁₂	
○ SBr ₄	
○ C ₂ H ₆	

	2 pts
Rank the following in order of increasing vapor pressure at a fixed temperature: H ₂ O, CH ₃ Cl, He, NaCl	
○ He < H ₂ O < CH ₃ Cl < NaCl	
He < CH ₃ Cl < H ₂ O < NaCl	
NaCl < H ₂ O < CH ₃ Cl < He	
○ H ₂ O < CH ₃ Cl < He < NaCl	
H ₂ O < NaCl < CH ₃ Cl < He	
Question 16	1 pts
Vhich of the following solids is a covalent network?	
○ CaCO ₃ (s)	
Ni(s)	
○ SiO₂(s)	
○ H ₂ O(s)	
Question 17	1 pts
Which of the following, in the solid state, would be an example of a covalent crystal?	
carbon dioxide	
○ water	
iron	
barium fluoride	
diamond	
Question 18	1 pts
Nomend and graphite are two asystelling forms of earlier. In which forms are the Costones are set in first stands	with one C bonded to
Diamond and graphite are two crystalline forms of carbon. In which form are the C atoms arranged in flat sheets three nearby C atoms?	

Question 19	2 pts
Which of the following, in the solid state, would be an example of a molecular crystal?	
o iron	
calcium fluroide	
diamond	
○ carbon dioxide	
Question 20	1 pts
Which of the following, in the solid state, would be an example of an ionic crystal?	
○ copper	
o sodium nitrate	
sodium nitrate carbon dioxide	
○ carbon dioxide	2 pts
carbon dioxide diamond Question 21 Metallic solids are solids composed of metal atoms that are held together by metallic bonds. They also tend to	
carbon dioxide diamond Question 21 Metallic solids are solids composed of metal atoms that are held together by metallic bonds. They also tend to	
carbon dioxide diamond Question 21 Metallic solids are solids composed of metal atoms that are held together by metallic bonds. They also tend to because	
carbon dioxide diamond Question 21 Metallic solids are solids composed of metal atoms that are held together by metallic bonds. They also tend to because the electrons in metallic solids are delocalized.	